Spectral receptive fields do not explain tuning for boundary curvature in V4.

نویسندگان

  • Timothy D Oleskiw
  • Anitha Pasupathy
  • Wyeth Bair
چکیده

The midlevel visual cortical area V4 in the primate is thought to be critical for the neural representation of visual shape. Several studies agree that V4 neurons respond to contour features, e.g., convexities and concavities along a shape boundary, that are more complex than the oriented segments encoded by neurons in the primary visual cortex. Here we compare two distinct approaches to modeling V4 shape selectivity: one based on a spectral receptive field (SRF) map in the orientation and spatial frequency domain and the other based on a map in an object-centered angular position and contour curvature space. We test the ability of these two characterizations to account for the responses of V4 neurons to a set of parametrically designed two-dimensional shapes recorded previously in the awake macaque. We report two lines of evidence suggesting that the SRF model does not capture the contour sensitivity of V4 neurons. First, the SRF model discards spatial phase information, which is inconsistent with the neuronal data. Second, the amount of variance explained by the SRF model was significantly less than that explained by the contour curvature model. Notably, cells best fit by the curvature model were poorly fit by the SRF model, the latter being appropriate for a subset of V4 neurons that appear to be orientation tuned. These limitations of the SRF model suggest that a full understanding of midlevel shape representation requires more complicated models that preserve phase information and perhaps deal with object segmentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Receptive Fields Do Not Explain Tuning for Boundary

23 24 The mid-level visual cortical area V4 in the primate is thought to be critical for the neural 25 representation of visual shape. Several studies agree that V4 neurons respond to 26 contour features, e.g., convexities and concavities along a shape boundary, that are 27 more complex than the oriented segments encoded by neurons in the primary visual 28 cortex. Here we compare two distinct a...

متن کامل

Spectral receptive field properties explain shape selectivity in area V4.

Neurons in cortical area V4 respond selectively to complex visual patterns such as curved contours and non-Cartesian gratings. Most previous experiments in V4 have measured responses to small, idiosyncratic stimulus sets and no single functional model yet accounts for all of the disparate results. We propose that one model, the spectral receptive field (SRF), can explain many observations of se...

متن کامل

Spectral properties of V4 neurons in the macaque.

Spectral properties of 129 cells in the V4 area of 5 macaque monkeys were studied quantitatively with narrow-band and broad-band colored lights. The large majority of cells exhibited some degree of wavelength sensitivity within their receptive fields. The half-bandwidth of the primary peak in the spectral-response curve was less than 50 nm for 72% of the cells; the mean half-bandwidth of these ...

متن کامل

Contour, color and shape analysis beyond the striate cortex.

The corticocortical pathway from striate cortex into the temporal lobe plays a crucial role in the visual recognition of objects. Anatomical studies indicate that this pathway is mainly organized as a serial hierarchy of multiple visual areas, including V1, V2, V3, V4, and inferior temporal cortex (IT). As expected from the anatomy, we have found that neurons in V4 and IT, like those in V1 and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 112 9  شماره 

صفحات  -

تاریخ انتشار 2014